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Abstract— The hyperspectral cameras used for imaging is having low spatial resolution ,and thus the pixels in the captured image will be 

mixtures of spectra of various materials present in the scene.Then further analysis of images becomes a tough task.Thus spectral 

unmixing comes as an unavoidable step in hyperspectral image processing.Spectral unmixing aims at finding out the no. of reference 

substances(endmembers),their spectral signatures and corresponding abundance maps of them in a hyperspectral image.This paper 

presents a comparative study and performance analysis of 5 geometrical algorithms for spectral unmixing ,namely 

AVMAX,SVMAX,ADVMM,SDVMM and N-FINDR.All the 5 algorithms are applied to the real hyperspectral data set (cuprite 

data,Nevada,U.S) and results are validated with reference to U.S.G.S spectral library. 

Index Terms—   ADVMM, AVMAX, Hyperspectral imaging, N-FINDR, SDVMM, Spectral signature, Spectral unmixing , SVMAX, 

——————————      —————————— 

1 INTRODUCTION                                                                     

 YPERSPECTRAL sensors collects the data in hundreds 
of  very narrow contiguous bands,and this provides a 
good way for the identification of various materials over 

the observed scene captured by the sensor.The various materi-
als are discriminated on their unique spectral signa-
tures.Hyperspectral imaging is having a wide range of appli-
cations in various fields as in agriculture,planetary 
remotesensing,military,environmental monitoring etc[1].The 
hyperspectral imaging sensors can capture many contiguous 
bands which is having very high spectral resolution and this 
will be covering not only visible regions but also the infra red 
regions of electromagnetic spectrum(0.3-
2.5µm)[2],[3].Advanced hyperspectral sensors like AVIRIS [4] 
of NASA is now able to cover the above mentioned wave-
length region using about 200 spectral channels. 

In the case of hyperspectral images ,depending upon the 
spatial resolution of sensor,the individual pixels in the cap-
tured scene may comprise of more than one material.each pix-
els will be the mixture of various materials of the surface patch 
and thus the spectra observed will contain multiple 
endmenbers (or spectral signatures) and thus the further anal-
ysis becomes difficult.This happens mainly because of the 
poor spatial resolution of the sensor used.Fig1 explains the 
concept of hyperspectral imaging[10].There comes the need of 
hyperspectral unmixing.Hyperspectral unmixng aims at the 
decomposition of the observed spectra into a set of pure refer-
ence materials(endmembers)and their abundance frac-
tions.Thus unmixing process gives both spectral signatures 
and corresponding abundance maps of materials present in 
the scene[5]. This unmixing problem has been a subject to 

many investigative studies for the past many years. 

 

Fig1.Hyperspectral imagery. 

1.1 Spectral unmixing  

Hyper Spectral unmixing is basically a blind source separation 
problem [6],[35]. Hyperspectral sense contain sources which 
are statistically dependent and they may combine either in a 
linear or nonlinear fashion.This makes spectral unmixing 
problem to be placed in higher level compared to  other source 
separation problems. 

Unmixing can be classified to linear[7] and Non line-
ar[8].Linear models  assume that the mixing scale is macro-
scopic,and the light which falls on the surface interacts with 
only one material.This type of mixing takes place due to the  
low spatial resolution of the sensor.Here multiple scatterings 
do not take place. 

In the case of Nonlinear mixing models the interaction be-
tween the light which is scattered by multiple materials oc-
curs,and the mixed model becomes complicated.The interac-
tions can be at Intimate or microscopic level.Thus non-linear 
unmixing becomes a difficult task.So here this paper concen-
trates in linear unmixing due to its simplicity,and also it’s the 
basis of many algorithms for more than 30 years.  

H 
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1.2 Linear Spectral Unmixing 

    The linear mixing model assumes that the spectra of a pixel 
in the acquired scene is a linear combination of all pure mate-
rials(endmembers) present in the scene.i it is assumed that the 
hyperspectral sensor used for capturing the scene has L spec-
tral bands, linear mixing model can be mathematically repre-
sented as follows. 

  
 y M n                                   (1) 
                 

Where y is an Lx1 column vector ,M is an Lxq matrix contain-
ing  q endmembers(pure reference materials) and α is a qx1 
vector containing the fractional abundances of the 
endmembers in the pixel and n is another Lx1 vector indicat-
ing the errors which affect the measurements at each pix-
el[9].In this modelling  both M and α have to be found by 
unmixing .Here ANC(abundance non-negativity con-
straint) 0i  ,where i=1,2….q and ASC(abundance sum to 
one constraint),1 1T   
Are imposed to this model.This takes another fact into consid-
eration as i ,for i=1,2…q ,represent the fractions or propor-
tions of the pure materials or endmembers present in the sce-
ne.In this { , 1,... }L

iY y R i n    of n  no. of observed spec-
tral vectors with dimension L.  
    Here in this paper all the 5 geometrical algorithms relay on 
this linear model inorder to carry out the unmixing process.All 
the geometrical approaches tries to solve the same linear 
unmixing problem shown in (1).Linear mixing concept is 
shown in fig.2[9] 
 

 

       Fig2.Linear mixing model  without any multiple scattering effects. 

 

 

1.3 Endmember extraction algorithms-overview 

              Spectral unmixing algorithms can also be called as 
Endmember extraction algorithms,endmember identification 
algorithms etc.All the Spectral unmixing algorithms are main-
ly classified in to three types.They are statistical approaches, 
sparse based methods and geometrical approaches. 

 
 

 
  Statistical approaches are rarely used in the case of spec-

tral unmixing ,since their computational complexity level is 
very high when compared to other methods as sparse and 
geometrical methods.but still if the spectral mixtures are high-
ly mixed then geometrical approaches provide poor results 
due to the lack of pure spectral vectors and all,these stastistical 
methods comes to play.under this,unmixing problem is for-
mulated as a statistical inference problem and statistical de 
.ICA(Independent component analysis)[11],DECA(dependent 
component analysis)[12] etc are the main algorithms coming 
under this category.All these are formulated under a Bayesian 
framework. 

Sparse based approaches is the another category of spectral 
unmixing algorithms.In this  spectral unmixing is formulated 
in a semi-supervised fashion,and it is assumed that the spec-
tral signatures observed can be expressed as the linear combi-
nations of known pure spectral signatures from a spectral li-
brary[13],[14].OMP(orthogonalmatchingpursuit)[15],ISMA(Ite
rative spectral mixture analysis)[16] etc comes under this.The 
most popular algorithms coming under this category are 
SUNSAL(sparse unmixing via splitted and augmented 
lagrangian approach)[17],and SUNSAL-TV((sparse unmixing 
via splitted and augmented lagrangian-total variation)[18]. 
           Geometrical approaches come as the third category of 
spectral unmixing algorithms.Basically it follows the fact that 
,under the linear mixing model spectral vectors belong to the 
simplex set whose vertices correspond to the 
endmembers.Thus by finding out the vertices it is possible to 
find out the endmember in the hyperspectral image.There are 
two categories in this approach.Algorithms which assume the 
presence of pure pixels comes under the one category and al-
gorithms which do not assume the presence of pure  pixels 
comes under another category.MVSA(minimum volume sim-
plex analysis)[19],MVES(minimum volume enclosing sim-
plex)[20],SISAL(simplex identification via split and augment-
ed lagrangian)[21],etc comes under the first category.In the 
second category to which this paper concen-
trates,comesthefollowingalgorithmslikeSVMAX(successivevol
umemaximization)[22],AVMAX(Alternating  volume maximi-
zation)[22],ADVMM(alternating decoupled volume max-
min)[23],SDVMM(successive decoupled volume max-
min)[23],N-FINDR[24],VCA(vertex component analysis)[25] 
,IEA(iterative error analysis)[26],PPI(pixel purity in-
dex)[27],etc are some of the algorithms come under this sec-
tion.In this paper 5 popular algorithms of this category name-
ly AVMAX,SVMAX,ADVMM,SDVMM and N-FINDR is taken 
in to account and their performance is evaluated and results 
are compared to find out the good one giving the best result 
among them. 
     The rest of the paper is organized as follows.Section 2 gives 
the theoretical ideas behind the selected algorithms, Section3 
explains the metrics used for performance evaluation ,Section 
4presents the experiments with real hyperspectral data it’s  
results and the  performance analysis  and finally conclusions 
are drawn in Section 5 . 
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  2 PURE PIXEL BASED GEOMETRICAL ALGORITHMS 

     As discussed in the previous sections geometrical algo-
rithms with pure pixel assumption assumes the presence of 
atleast one pure pixel per endmember.These pure pixel algo-
rithms still belong to minimum volume class.This assumption 
of pure pixels make these algoriths very efficient but still cre-
ates difficulty in some datasets.In this section  a brief theoreti-
cal side of each of the 5 algorithms namely 
AVMAX,SVMAX,ADVMM,SDVMM and N-FINDR is given . 

2.1 AVMAX (Alternating volume maximization) 

     Altenating volume maximization algorithm[22] is based on 
winter problem described in [28].in winter’s work he pro-
posed that the ground-truth endmembers can be located by 
finding a collection of pixel vectors whose simplex volume is 
the largest.The optimization formulation of winters problem is 
as follows. 

  
 Where according to winters work each endmember esti-

mate i is restricted to be any vector in{ [1],......, [ ]}x x L .when 
alternating volume maximization is applied to this it maxim-
izes in a cycic fashion,the volume of the simplex defined by 
the pure members(endmembers) but with respect to only one 
endmember at a time.This is explained as follows in[22]. 

The starting point is taken as 1( ,....., )N  .The following 
alternating cycle is repeated as for j=1…N solve the problem 

  
  
   (3)               
 

And update j  as the solution of (3).we have to continue 
this until the stopping criterion is satisfied. The algorithm is 
explained in detail in [22].Avmax is somewhat similar to SC-
N-FINDR which is a modified version of N-FINDR described 
in[29].  

2.2 SVMAX (Successive volume maximization) 

Successive volume maximization [22] is another strategy of 
optimization for the winter’s problem shown in(2).This re-
quires the winter’s problem to be written in a modified fash-
ion as follows in[22]. 

  
 
 
 

 
Where  
 { | [ 1] , }N T TF w R w F      

 
 

Then according to rules |det (w)| can be written as fol-
lows. 

 

 
 
Thus (4) is modified as follows 
   

Where  

  
                

. 
Thus the following procedure is followed. 
For j=1:N solve the problem 
  

 
 
At last we will get 1 )( ,.........., Nw w as the approximate solu-
tion of(6).It’s similar to VCA[25] in some aspects.But unlike 
VCA algorithm SVMAX considers  thewhole subspace when 
the data is projected orthogonally  whereasVCA takes random 
direction in subspace.        

2.3 ADVMM (Alternating decoupled volume max-min) 

     In this winter’s problem shown in(2)is formulated as a max-
min problem and alternating optimization [23]is used to solve 
it.This winter’s worst case problem is given as a max-min 
problem as follows in[30]. 

Where y[1],…y[L] is the data cloud  inside which maximum 
volume simplex is situated .From the vertices of this simplex 
endmembers are to be found out. 

By taking ,i iv Y  
( 1)[ [1],...., [ ]] N LY y y L R     and 

for any permutation matrix p, det( ) det( )P    we can 
write the problem in (8) as  

  
        Then by doing the cofactor expansion and simplification 
of (9) as in[30] it is reduced to 

 
 

     
 
 
The above problem can be solved by solving the 2 decou-
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Thus ADVMM solves the max-min problem of spectral 
unmixing. 

2.4 SDVMM(Successive decoupled volume max-min) 

   This is also another algorithm which follows winter’s 
problem shown in (8).This solves the decoupled max-min 
problem in a successive optimization method. By assuming  

 
  Problem(8) can be written as follows. 

  
Where F=conv{y[1],…y[L]}.The problem (13) can be modified 
and written as  

  
where  

 
The detailed explanation of terms and simplification steps 

is given in [30].The problem can be approximated by succes-
sive optimization as follows. 
 

 
The solution to (16) is given in [30] as follows. 
 
       

 

Thus it solves the max-min problem by successive optization. 

 

2.5 N-FINDR  

   This is another popular algorithm used for spectral 
unmixing.This also works according to winter’s belief 
[24].This is a pure pixel based algorithm and this search for the 
set of pixels with largest possible volume by inflating a sim-
plex inside the given dataset. 

The original n-findr algorithm [31] is having 4 steps as fol-
lows. 

1) Feature reduction-In this the dimension of data is reduced 
from n toP-1 by some PCA [32] or MNF[33],where P is the 
number of endmembers to be identified. 
2)Take some randomly selected endmembers from the dataset 
as  

  
3)At each iteration k≥0,calculate the volume by this set of 
endmembers as follows. 

  

 
4) Replacement- For each and every pixel the volume correspond 

ing to it  is checked  by this way,if this pixel replaces one of the 

given  endmember positions in matrix shown above.. If the repla 

cement of pixel results in an increase in volume,the pixel replaces 

the endmember.This process continues until there are no 

endmember replacements in the given data. 

3 METRIC USED FOR PERFORMANCE 

EVALUATION 

    As the result of spectral unmixing we will get spectral signa-
tures of endmembers and also their corresponding 
abundaance maps. Here in this paper The metric used for the 
validation of results is Spectral Angle Mapper (SAM)[34]. It’s 
measured between the original library spectra which we will 
get from U.S.G.S library [36], and the spectra obtained by the 
unmixing process. 

The basic equation for the spectral angle is given as follows. 
  
 
 
 
 
 
Where, x is the library spectra and y is the spectra obtained     

from unmixing.As the spectral  angle (SA) decreases, the result 
becomes more good and when we get a high value for SA we 
can infer that the performance of algorithm is poor.In that way 
we calculate the SA for each mineral spectra and finally aver-
age the results to obtain average SA for each algorithms.This 
can be seen in detail in the following sections 

4 XPERIMENTS ON REAL DATA-RESULTS AND 

PERFORMANCE ANALYSIS 

In this part,all the 5 mentioned algorithms 
AVMAX,SVMAX,ADVMM,SDVMM and N-FINDR  are ap-
plied to the real hyperspectral data set taken over Cuprite 
mining site,Nevada,in 1997[37].We consider only a subimage 
of the hyperspectral data as a region of interest ,which is of 
size 250x191 pixels(L=47750).This contains 224 bands over the 
wavelength region of 0.4µm to 2.5 µm.In this set, the bands 1-
2,104-113,148-167 and 221-224  were removed due to low SNR 
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effect which occurs due to the effect of water vapour.Thus a 
total of 188 bands were used for the implementation of the 
algorithms.As the next step,we want to know how many 
endmembers are located in this region of interest.For this we 
applied Hyperspectral subspace identification by minimum 
error (HySime) [38] and thus estimated the number of 
endmembers in this region as N=18. 
   The abundance maps corresponding to each mineral was 
obtained by using fully constrained least square (FCLS) [39] 
method.The minerals obtained were then identified by the 
visual comparison of the abundance maps obtained with the 
abundance maps shown in [20],[25],[40] , and [41].As said ear-
lier  spectral angle is used for as measure for the perfor-
mance.The value of SA for the estimated endmembers ob-
tained by all the 5 algorithms are shown in Table1,2,3,4 and 
5..The numbers in parantheses denote the value of SA for the 
estimated endmember which is repeated.Due to the space lim-
it here we have shown the estimated endmember signatures 
and abundance maps of N-FINDR algorithm and repeated 
minerals are not shown .The abundance maps and spectral 
signatures are shown below. 

 
 
 
 
 
 
 
 
 
 
                                                 
                 
                                                           
 
 
 
 
 
 
                                                         
                              
                                  

                                                    
                                                

 
 

 
 
 
 

 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(f) 

Fig.3.Abundance maps obtained by N-Findr algorithm 

Fig.4. Spectral signatures estimated by N-findr 
algorithm 
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TABLE 1 
SA values for AVMAX algorithm 

 

 
Minerals                                       SA(In degrees) 

 
 

1) Buddingtonite                               4.3752 
2) Nontronite2                                  4.0603 
3) Nontronite3                                  8.5687(13.9465) 
4) Muscovite                                     7.5151(8.1180) 
5) Dumortierite                                9.9103(6.1794) 
6) Montmorillonite 1                       7.5419(8.4586) 
7) Alunite                                         14.2029(11.6362) 
8) Nontronite1                                 23.8962 
9) Andradite1                                  6.9561 
10) Kaolinite1                                   8.4594 
11) Chalcedony                                5.8523 
12) Smectite                                      4.7384 
13) Desert varnish                           11.9521 
          
 
 

 
Average SA                            9.2418 

 
 

 
TABLE2 

                   SA values for SVMAX algorithm 
 
 

 
Minerals                                SA (In degrees) 

 
 
1) Muscovite                         7.9462 
2) Alunite                              4.5523(12.5400)  
3) Kaolinite 1                        20.6245(8.4594) 
4) Dumortierite                    9.9103(6.5689) 
5) Montmorillonite  1         7.3248 
6) Buddingtonite                 3.9375 
7) Nontronite 3                    8.9030(6.7681) 
8) Smectite                           5.9870 
9) Nontronite2                     3.6690(4.9857) 
10) Paragonite                     6.3562 
11) Desertvarnish               6.3356 
12) Chalcedony                   4.8207 
13) Goethite                         14.4817 
 

 
 

 
Average SA                     8.0094 

 
 

 

TABLE 3 
SA values for ADVMM algorithm 

 

 
Minerals                                   SAD (In degrees) 

 
1) Paragonite                            6.3317(6.5816) 
2) Nontronite2                          3.6689(4.9378) 
3) Muscovite                             8.1111 
4) Buddingtonite                      4.3754 
5) Goethite                                 20.9323 
6) Andradite1                           8.2735 
7) Alunite                                  7.4632(8.3189) 
8) Smectite                                3.2023 
9) Montmorillonite 1               7.2620 
10)  Kaolinite1                          11.9986(21.2243) 
11) Dumortierite                      6.2242(6.8216) 
12) Chalcedony                        8.9438 
13) Desert varnish                    6.1276        

 
 
 
 

 
Average SA                            8.3777 

 
 
 

TABLE 4 
                    SA values for SDVMM algorithm 

 
 

       
Minerals                                   SA (In degrees) 

 
1) Muscovite                              7.9462 
2) Nontronite 3                          15.0209(8.9030) 
3) Kaolinite 1                              20.6244 
4) Dumortierite                          5.0531(9.9100) 
5) Montmorillonite 1                 7.3245 
6) Buddingtonite                        3.9378 
7) Nontronite2                            3.6689(4.9857) 
8) Smectite                                   3.5697(5.9868) 
9)  Alunite                                    12.5399(8.0169) 
10) Desertvarnish                       6.3356 
11) Paragonite                             6.0918 
12) Chalcedony                           4.8207 
13) Goethite                                 14.4815 
 
 

 
 

 

 

 
Average SA                              8.2898 
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TABLE 5 
                    SA values for N-FINDR algorithm 
 

 
1)Pyrope 1                                        3.6341 
2)Dumortierite                                5.0531(11.9325)(9.9103) 
3)Chalcedony                                  5.222 
4)Kaolinite 2                                    10.8546 
5)Muscovite                                     7.6819 
6)Nontronite 3                                7.9865 
7)Kaolinite 3                                    10.4473 
8)Buddingtonite                             4.3752 
9)Andradite                                     8.9945 
10)Smectite                                      4.7384 
11)Nontronite2                               6.5617(3.9298) 
12)Sphene                                       6.8655 
13)Alunite                                       5.3319(15.3751) 
14)Montmorillonite 1                    7.5419 
 
 

 
Average SA                           7.5745 

 
   The tables shown above gives the Spectral angle between the 
estimated endmember signatures and the Library spectra of 
U.S.G.S library.When analyzing the tables we can see that the 
Average Spectral angle is different for all the five algorithms 
and AVMAX(Alternating Volume maximization)algorithm 
gives the high value for the average SA which is 9.24.This 
gives the indication of poor performance when compared to 
other algorithm.In between the algorithms N-FINDR gives the 
appreciable result with Average SA of 7.4131 .This points to-
wards a good result of spectral unmixing of the given data 
set.All the other algorithms could identify only 13 minerals 
out of 18 whereas N-FINDR could identify 14 minerals out of 
18.(In the table it can be seen that Alunite and Nontronite 2 
were repeated ,and Dumortierite was repeated 3 times). 
Moreover N-FINDR was able to detect the rare mineral 
“sphene” where other 4 algorithms was not able to detect the 
presence of it.In between N-findr and Avmax, comes the rest 
of algorithms and in this Svmax gives the good performance 
after N-findr,Sdvmm comes as the third and Advmm comes as 
the second last when looking in to the performance level. 
    As the N-findr algorithm works on the replacement of pix-
els and endmembers it does not miss any endmembers in the 
given data set and can give the better result when compared to 
all other algorithms.It solves the winter’s problem in an effi-
cient way compared to all other algorithms and comes out 
with the best result among the other methods. 

5 CONCLUSION 

  In this paper, the implementation and comparative study of  
five geometrical approaches which are popularly used for 
spectral unmixing is done.The  spectral unmixing experiment 

was done with Cuprite dataset(Nevada,U.S).The performance 
comparison of  algorithms is done based on Spectral Angle 
mapper and it used U.S.G.S library as the reference.By the 
comparative study it’s found that N-FINDR algorithm gives 
the better performance compared to the other four algorithms. 
AVMAX (Alternating volume maximization) is the one which 
gives much lower performance compared to others.As a future 
work the geometrical based spectral unmixing techniques can 
be compared with the statistical methods and sparse methods 
and it can make out new results. This can open new ways to 
researches also.  
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